Nuprl Lemma : HofstadterF_wf

n:ℤ(HofstadterF(n) ∈ if 0 <then ℕelse ℕ+fi )


Proof




Definitions occuring in Statement :  HofstadterF: HofstadterF(n) int_seg: {i..j-} ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] member: t ∈ T add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  Hofstadter_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}n:\mBbbZ{}.  (HofstadterF(n)  \mmember{}  if  0  <z  n  then  \mBbbN{}n  +  1  else  \mBbbN{}\msupplus{}2  fi  )



Date html generated: 2018_05_21-PM-09_08_10
Last ObjectModification: 2018_05_19-PM-05_09_40

Theory : general


Home Index