Nuprl Lemma : Hofstadter_wf

n:ℤ((HofstadterF(n) ∈ if 0 <then ℕelse ℕ+fi ) ∧ (HofstadterM(n) ∈ if 0 ≤then ℕelse ℕfi ))


Proof




Definitions occuring in Statement :  HofstadterM: HofstadterM(n) HofstadterF: HofstadterF(n) int_seg: {i..j-} le_int: i ≤j ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] and: P ∧ Q member: t ∈ T add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) cand: c∧ B HofstadterF: HofstadterF(n) less_than: a < b less_than': less_than'(a;b) true: True squash: T HofstadterM: HofstadterM(n) le: A ≤ B subtract: m iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) has-value: (a)↓ assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt le_wf subtype_rel_self istype-top nat_wf istype-false itermAdd_wf int_term_value_add_lemma subtract-add-cancel int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel value-type-has-value int-value-type set-value-type lelt_wf subtract_nat_wf assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf false_wf assert_of_le_int le_int_wf ifthenelse_wf subtype_rel-equal top_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType unionElimination applyEquality instantiate because_Cache applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption lessCases isect_memberFormation_alt axiomSqEquality imageMemberEquality baseClosed imageElimination cumulativity intEquality closedConclusion addEquality callbyvalueReduce sqleReflexivity minusEquality multiplyEquality equalityIsType1 lambdaFormation dependent_set_memberEquality promote_hyp dependent_pairFormation equalityElimination voidEquality isect_memberEquality lambdaEquality universeEquality isect_memberFormation

Latex:
\mforall{}n:\mBbbZ{}
    ((HofstadterF(n)  \mmember{}  if  0  <z  n  then  \mBbbN{}n  +  1  else  \mBbbN{}\msupplus{}2  fi  )
    \mwedge{}  (HofstadterM(n)  \mmember{}  if  0  \mleq{}z  n  then  \mBbbN{}n  +  1  else  \mBbbN{}1  fi  ))



Date html generated: 2019_10_15-AM-11_37_13
Last ObjectModification: 2018_10_11-PM-10_29_16

Theory : general


Home Index