Nuprl Lemma : HofstadterM_wf
∀n:ℤ. (HofstadterM(n) ∈ if 0 ≤z n then ℕn + 1 else ℕ1 fi )
Proof
Definitions occuring in Statement : 
HofstadterM: HofstadterM(n)
, 
int_seg: {i..j-}
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
Hofstadter_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}n:\mBbbZ{}.  (HofstadterM(n)  \mmember{}  if  0  \mleq{}z  n  then  \mBbbN{}n  +  1  else  \mBbbN{}1  fi  )
Date html generated:
2018_05_21-PM-09_07_55
Last ObjectModification:
2018_05_19-PM-05_09_13
Theory : general
Home
Index