Nuprl Lemma : HofstadterM_wf

n:ℤ(HofstadterM(n) ∈ if 0 ≤then ℕelse ℕfi )


Proof




Definitions occuring in Statement :  HofstadterM: HofstadterM(n) int_seg: {i..j-} le_int: i ≤j ifthenelse: if then else fi  all: x:A. B[x] member: t ∈ T add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  Hofstadter_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}n:\mBbbZ{}.  (HofstadterM(n)  \mmember{}  if  0  \mleq{}z  n  then  \mBbbN{}n  +  1  else  \mBbbN{}1  fi  )



Date html generated: 2018_05_21-PM-09_07_55
Last ObjectModification: 2018_05_19-PM-05_09_13

Theory : general


Home Index