Nuprl Lemma : Peirce's-law-iff-xmiddle
∀[P,B:ℙ].  (((P ⇒ B) ⇒ P) ⇒ P) ⇐⇒ ∀[P,B:ℙ].  (P ∨ (P ⇒ B))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
guard: {T}
Lemmas referenced : 
uall_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
universeEquality, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
inrFormation, 
inlFormation, 
because_Cache, 
unionElimination
Latex:
\mforall{}[P,B:\mBbbP{}].    (((P  {}\mRightarrow{}  B)  {}\mRightarrow{}  P)  {}\mRightarrow{}  P)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[P,B:\mBbbP{}].    (P  \mvee{}  (P  {}\mRightarrow{}  B))
Date html generated:
2016_05_15-PM-03_19_03
Last ObjectModification:
2015_12_27-PM-01_03_37
Theory : general
Home
Index