Nuprl Lemma : all-unit
∀P:Unit ⟶ ℙ. (∀x:Unit. P[x] ⇐⇒ P[⋅])
Proof
Definitions occuring in Statement : 
it: ⋅, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
unit: Unit, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
unit: Unit, 
it: ⋅, 
guard: {T}
Lemmas referenced : 
all_wf, 
unit_wf2, 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
equalityElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}P:Unit  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}x:Unit.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[\mcdot{}])
Date html generated:
2016_05_15-PM-03_24_50
Last ObjectModification:
2015_12_27-PM-01_06_15
Theory : general
Home
Index