Nuprl Lemma : all-unit
∀P:Unit ⟶ ℙ. (∀x:Unit. P[x] 
⇐⇒ P[⋅])
Proof
Definitions occuring in Statement : 
it: ⋅
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
unit: Unit
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
unit: Unit
, 
it: ⋅
, 
guard: {T}
Lemmas referenced : 
all_wf, 
unit_wf2, 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
equalityElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}P:Unit  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}x:Unit.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[\mcdot{}])
Date html generated:
2016_05_15-PM-03_24_50
Last ObjectModification:
2015_12_27-PM-01_06_15
Theory : general
Home
Index