Nuprl Lemma : andrew_wf
∀[T:𝕌']. andrew{i:l}(T) ∈ 𝕌' supposing T ⊆r Type
Proof
Definitions occuring in Statement : 
andrew: andrew{i:l}(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
andrew: andrew{i:l}(T)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
subtype_rel_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
universeEquality, 
productEquality, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
isectEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[T:\mBbbU{}'].  andrew\{i:l\}(T)  \mmember{}  \mBbbU{}'  supposing  T  \msubseteq{}r  Type
Date html generated:
2016_05_15-PM-07_55_16
Last ObjectModification:
2015_12_27-AM-11_03_42
Theory : general
Home
Index