Nuprl Lemma : andrew_wf

[T:𝕌']. andrew{i:l}(T) ∈ 𝕌supposing T ⊆Type


Proof




Definitions occuring in Statement :  andrew: andrew{i:l}(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a andrew: andrew{i:l}(T) and: P ∧ Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  subtype_rel_wf subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality universeEquality productEquality thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis isectEquality because_Cache applyEquality lambdaEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:\mBbbU{}'].  andrew\{i:l\}(T)  \mmember{}  \mBbbU{}'  supposing  T  \msubseteq{}r  Type



Date html generated: 2016_05_15-PM-07_55_16
Last ObjectModification: 2015_12_27-AM-11_03_42

Theory : general


Home Index