Nuprl Lemma : bl-rev-exists_wf

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  ((∃x∈rev(L).P[x])_b ∈ 𝔹)


Proof




Definitions occuring in Statement :  bl-rev-exists: (∃x∈rev(L).P[x])_b l_member: (x ∈ l) list: List bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bl-rev-exists-sq l_member_wf bool_wf list_wf bl-exists_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule functionEquality setEquality universeEquality lambdaEquality applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].    ((\mexists{}x\mmember{}rev(L).P[x])\_b  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-03_49_02
Last ObjectModification: 2015_12_27-PM-01_22_14

Theory : general


Home Index