Nuprl Lemma : bool-decider_wf

[b:𝔹]. (bool-decider(b) ∈ Dec(↑b))


Proof




Definitions occuring in Statement :  bool-decider: bool-decider(b) assert: b bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  bool-decider: bool-decider(b) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] prop:
Lemmas referenced :  decidable__assert subtype_rel_self bool_wf decidable_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination functionEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[b:\mBbbB{}].  (bool-decider(b)  \mmember{}  Dec(\muparrow{}b))



Date html generated: 2018_05_21-PM-06_28_58
Last ObjectModification: 2018_05_19-PM-04_40_06

Theory : general


Home Index