Nuprl Lemma : bool-decider_wf
∀[b:𝔹]. (bool-decider(b) ∈ Dec(↑b))
Proof
Definitions occuring in Statement : 
bool-decider: bool-decider(b)
, 
assert: ↑b
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
bool-decider: bool-decider(b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
decidable__assert, 
subtype_rel_self, 
bool_wf, 
decidable_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[b:\mBbbB{}].  (bool-decider(b)  \mmember{}  Dec(\muparrow{}b))
Date html generated:
2018_05_21-PM-06_28_58
Last ObjectModification:
2018_05_19-PM-04_40_06
Theory : general
Home
Index