Nuprl Lemma : church-pair_wf
∀[A,B,C:Type].  (church-pair() ∈ A ⟶ B ⟶ (A ⟶ B ⟶ C) ⟶ C)
Proof
Definitions occuring in Statement : 
church-pair: church-pair()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
church-pair: church-pair()
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[A,B,C:Type].    (church-pair()  \mmember{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  (A  {}\mrightarrow{}  B  {}\mrightarrow{}  C)  {}\mrightarrow{}  C)
Date html generated:
2016_05_15-PM-03_22_16
Last ObjectModification:
2015_12_27-PM-01_04_43
Theory : general
Home
Index