Nuprl Lemma : church-snd_wf

[A,T:Type].  (church-snd() ∈ ((Top ⟶ T ⟶ T) ⟶ A) ⟶ A)


Proof




Definitions occuring in Statement :  church-snd: church-snd() uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T church-snd: church-snd()
Lemmas referenced :  church-false_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,T:Type].    (church-snd()  \mmember{}  ((Top  {}\mrightarrow{}  T  {}\mrightarrow{}  T)  {}\mrightarrow{}  A)  {}\mrightarrow{}  A)



Date html generated: 2016_05_15-PM-03_22_24
Last ObjectModification: 2015_12_27-PM-01_04_49

Theory : general


Home Index