Nuprl Lemma : church-succ_wf

cS ∈ cNat ⟶ cNat


Proof




Definitions occuring in Statement :  church-succ: cS church-Nat: cNat member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  church-succ: cS member: t ∈ T church-Nat: cNat subtype_rel: A ⊆B uall: [x:A]. B[x]
Lemmas referenced :  istype-universe church-Nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaEquality_alt isect_memberEquality_alt applyEquality hypothesisEquality cut thin because_Cache hypothesis sqequalHypSubstitution functionIsType inhabitedIsType universeIsType instantiate introduction extract_by_obid isectElimination universeEquality

Latex:
cS  \mmember{}  cNat  {}\mrightarrow{}  cNat



Date html generated: 2020_05_20-AM-08_05_25
Last ObjectModification: 2019_11_15-PM-09_53_13

Theory : general


Home Index