Nuprl Lemma : church-succ_wf
cS ∈ cNat ⟶ cNat
Proof
Definitions occuring in Statement : 
church-succ: cS
, 
church-Nat: cNat
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
church-succ: cS
, 
member: t ∈ T
, 
church-Nat: cNat
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
church-Nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
applyEquality, 
hypothesisEquality, 
cut, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
functionIsType, 
inhabitedIsType, 
universeIsType, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality
Latex:
cS  \mmember{}  cNat  {}\mrightarrow{}  cNat
Date html generated:
2020_05_20-AM-08_05_25
Last ObjectModification:
2019_11_15-PM-09_53_13
Theory : general
Home
Index