Nuprl Lemma : church-zero_wf
cZ ∈ cNat
Proof
Definitions occuring in Statement : 
church-zero: cZ
, 
church-Nat: cNat
, 
member: t ∈ T
Definitions unfolded in proof : 
church-zero: cZ
, 
church-Nat: cNat
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
functionIsType, 
inhabitedIsType, 
universeIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
hypothesis
Latex:
cZ  \mmember{}  cNat
Date html generated:
2020_05_20-AM-08_05_18
Last ObjectModification:
2019_11_15-PM-09_51_29
Theory : general
Home
Index