Nuprl Lemma : compat_symmetry

[T:Type]. ∀as,bs:T List.  (as || bs ⇐⇒ bs || as)


Proof




Definitions occuring in Statement :  compat: l1 || l2 list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  compat: l1 || l2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q guard: {T} member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  iseg_wf or_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution unionElimination thin cut hypothesis inrFormation lemma_by_obid isectElimination hypothesisEquality inlFormation because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    (as  ||  bs  \mLeftarrow{}{}\mRightarrow{}  bs  ||  as)



Date html generated: 2016_05_15-PM-03_50_11
Last ObjectModification: 2015_12_27-PM-01_23_18

Theory : general


Home Index