Nuprl Lemma : cont-induction-ext
∀[P:ℕ ⟶ ℙ]. (P[0] 
⇒ (∀n:ℕ. (P[n] 
⇒ P[n + 1])) 
⇒ (∀n:ℕ. P[n]))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
cont-induction, 
cont-induction-lemma, 
primrec-induction
Lemmas referenced : 
cont-induction, 
cont-induction-lemma, 
primrec-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  P[n]))
Date html generated:
2018_05_21-PM-06_59_48
Last ObjectModification:
2018_05_19-PM-04_42_03
Theory : general
Home
Index