Nuprl Lemma : cont-induction-lemma

[P:ℕ ⟶ ℙ]. (P[0]  (∀n:ℕ(P[n]  P[n 1]))  (∀n:ℕ. ∀[m:ℕ]. ((P[n]  P[n m])  P[n m])))


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) guard: {T}
Lemmas referenced :  false_wf all_wf nat_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties uall_wf primrec-induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality because_Cache functionEquality applyEquality hypothesisEquality hypothesis dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination universeEquality cumulativity

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    (P[0]  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}[m:\mBbbN{}].  ((P[n]  {}\mRightarrow{}  P[n  +  m])  {}\mRightarrow{}  P[n  +  m])))



Date html generated: 2016_05_15-PM-04_09_08
Last ObjectModification: 2016_01_16-AM-11_03_26

Theory : general


Home Index