Nuprl Lemma : primrec-induction

[P:ℕ ⟶ ℙ]. (P[0]  (∀n:ℕ(P[n]  P[n 1]))  (∀n:ℕP[n]))


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_wf all_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf false_wf intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf primrec0_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract-add-cancel subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality functionEquality applyEquality functionExtensionality hypothesisEquality because_Cache universeEquality dependent_set_memberEquality addEquality setElimination natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll cumulativity intWeakElimination independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry equalityElimination productElimination promote_hyp instantiate

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  P[n]))



Date html generated: 2018_05_21-PM-06_59_19
Last ObjectModification: 2017_07_26-PM-05_02_03

Theory : general


Home Index