Nuprl Lemma : continuous'-monotone_wf

[F:Type ⟶ Type]. (continuous'-monotone{i:l}(T.F[T]) ∈ ℙ')


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  and_wf type-monotone_wf type-continuous'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination lambdaEquality applyEquality hypothesisEquality universeEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (continuous'-monotone\{i:l\}(T.F[T])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_15-PM-06_52_57
Last ObjectModification: 2015_12_27-AM-11_42_44

Theory : general


Home Index