Nuprl Lemma : type-continuous'_wf

[F:Type ⟶ Type]. (semi-continuous(λT.F[T]) ∈ ℙ')


Proof




Definitions occuring in Statement :  type-continuous': semi-continuous(λT.F[T]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-continuous': semi-continuous(λT.F[T]) so_lambda: λ2x.t[x] prop: so_apply: x[s] type-incr-chain: type-incr-chain{i:l}()
Lemmas referenced :  uall_wf type-incr-chain_wf subtype_rel_wf tunion_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesis lambdaEquality cumulativity applyEquality hypothesisEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (semi-continuous(\mlambda{}T.F[T])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_15-PM-06_52_30
Last ObjectModification: 2015_12_27-AM-11_43_25

Theory : general


Home Index