Nuprl Lemma : type-continuous'_wf
∀[F:Type ⟶ Type]. (semi-continuous(λT.F[T]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
type-continuous': semi-continuous(λT.F[T])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-continuous': semi-continuous(λT.F[T])
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
type-incr-chain: type-incr-chain{i:l}()
Lemmas referenced : 
uall_wf, 
type-incr-chain_wf, 
subtype_rel_wf, 
tunion_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
lambdaEquality, 
cumulativity, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (semi-continuous(\mlambda{}T.F[T])  \mmember{}  \mBbbP{}')
Date html generated:
2016_05_15-PM-06_52_30
Last ObjectModification:
2015_12_27-AM-11_43_25
Theory : general
Home
Index