Nuprl Lemma : csm_wf
∀[V:Type]. (CSM(V) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
csm: CSM(V)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
csm: CSM(V)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
bool_wf, 
assert_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
applyEquality, 
thin, 
unionEquality, 
setEquality, 
sqequalHypSubstitution, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[V:Type].  (CSM(V)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-05_09_34
Last ObjectModification:
2015_12_27-PM-02_24_08
Theory : general
Home
Index