Step
*
1
1
1
of Lemma
cyclic-map-conjugate
1. T : Type
2. g : T ⟶ T
3. h : T ⟶ T
4. ∀b:T. ((h (g b)) = b ∈ T)
5. ∀a:T. ((g (h a)) = a ∈ T)
6. f : T ⟶ T
7. ∀a1,a2:T. (((f a1) = (f a2) ∈ T)
⇒ (a1 = a2 ∈ T))
8. ∀x,y:T. ∃n:ℕ. ((f^n x) = y ∈ T)
9. a1 : T
10. a2 : T
11. (g (f (h a1))) = (g (f (h a2))) ∈ T
12. (f (h a1)) = (f (h a2)) ∈ T
13. (h a1) = (h a2) ∈ T
⊢ a1 = a2 ∈ T
BY
{ ((ApFunToHypEquands `Z' ⌜g Z⌝ ⌜T⌝ (-1)⋅ THENM RWO "5" (-1)) THEN Auto)⋅ }
Latex:
Latex:
1. T : Type
2. g : T {}\mrightarrow{} T
3. h : T {}\mrightarrow{} T
4. \mforall{}b:T. ((h (g b)) = b)
5. \mforall{}a:T. ((g (h a)) = a)
6. f : T {}\mrightarrow{} T
7. \mforall{}a1,a2:T. (((f a1) = (f a2)) {}\mRightarrow{} (a1 = a2))
8. \mforall{}x,y:T. \mexists{}n:\mBbbN{}. ((f\^{}n x) = y)
9. a1 : T
10. a2 : T
11. (g (f (h a1))) = (g (f (h a2)))
12. (f (h a1)) = (f (h a2))
13. (h a1) = (h a2)
\mvdash{} a1 = a2
By
Latex:
((ApFunToHypEquands `Z' \mkleeneopen{}g Z\mkleeneclose{} \mkleeneopen{}T\mkleeneclose{} (-1)\mcdot{} THENM RWO "5" (-1)) THEN Auto)\mcdot{}
Home
Index