Nuprl Lemma : cyclic-map-conjugate
∀[T:Type]. ∀[g,h:T ⟶ T].
  (∀[f:cyclic-map(T)]. (g o (f o h) ∈ cyclic-map(T))) supposing 
     ((∀a:T. ((g (h a)) = a ∈ T)) and 
     (∀b:T. ((h (g b)) = b ∈ T)))
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
compose: f o g
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cyclic-map: cyclic-map(T)
, 
injection: A →⟶ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
inject: Inj(A;B;f)
, 
compose: f o g
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
all_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf, 
cyclic-map_wf, 
compose_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
inject_wf, 
iterated-conjugate2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
lambdaFormation, 
applyLambdaEquality, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[g,h:T  {}\mrightarrow{}  T].
    (\mforall{}[f:cyclic-map(T)].  (g  o  (f  o  h)  \mmember{}  cyclic-map(T)))  supposing 
          ((\mforall{}a:T.  ((g  (h  a))  =  a))  and 
          (\mforall{}b:T.  ((h  (g  b))  =  b)))
Date html generated:
2018_05_21-PM-08_25_43
Last ObjectModification:
2017_07_26-PM-05_54_07
Theory : general
Home
Index