Nuprl Lemma : iterated-conjugate2
∀[T:Type]. ∀[f,g,h:T ⟶ T].
  (∀[n:ℕ]. (g o (f o h)^n = (g o (f^n o h)) ∈ (T ⟶ T))) supposing 
     ((∀b:T. ((h (g b)) = b ∈ T)) and 
     (∀a:T. ((g (h a)) = a ∈ T)))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
compose: f o g
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
ge: i ≥ j 
, 
fun_exp: f^n
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
compose: f o g
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
istype-void, 
compose_wf, 
fun_exp_wf, 
decidable__le, 
subtract_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
istype-universe, 
nat_properties, 
ge_wf, 
istype-less_than, 
primrec-unroll, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subtract-1-ge-0, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
primrec_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsType, 
equalityIsType1, 
inhabitedIsType, 
applyEquality, 
instantiate, 
isect_memberFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
axiomEquality, 
functionIsTypeImplies, 
functionExtensionality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
equalityElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
promote_hyp, 
cumulativity, 
addEquality, 
minusEquality, 
isectIsTypeImplies
Latex:
\mforall{}[T:Type].  \mforall{}[f,g,h:T  {}\mrightarrow{}  T].
    (\mforall{}[n:\mBbbN{}].  (g  o  (f  o  h)\^{}n  =  (g  o  (f\^{}n  o  h))))  supposing 
          ((\mforall{}b:T.  ((h  (g  b))  =  b))  and 
          (\mforall{}a:T.  ((g  (h  a))  =  a)))
Date html generated:
2019_10_15-AM-11_19_13
Last ObjectModification:
2018_10_19-PM-01_30_20
Theory : general
Home
Index