Nuprl Lemma : iterated-conjugate2

[T:Type]. ∀[f,g,h:T ⟶ T].
  (∀[n:ℕ]. (g (f h)^n (g (f^n h)) ∈ (T ⟶ T))) supposing 
     ((∀b:T. ((h (g b)) b ∈ T)) and 
     (∀a:T. ((g (h a)) a ∈ T)))


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T top: Top uall: [x:A]. B[x] true: True nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: ge: i ≥  fun_exp: f^n lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt compose: g squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  istype-void compose_wf fun_exp_wf decidable__le subtract_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-nat istype-universe nat_properties ge_wf istype-less_than primrec-unroll equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal subtract-1-ge-0 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf primrec_wf itermAdd_wf int_term_value_add_lemma int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity natural_numberEquality isect_memberEquality_alt voidElimination cut introduction extract_by_obid hypothesis because_Cache functionEquality hypothesisEquality sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality sqequalRule independent_pairFormation universeIsType functionIsType equalityIsType1 inhabitedIsType applyEquality instantiate isect_memberFormation_alt setElimination rename intWeakElimination lambdaFormation_alt axiomEquality functionIsTypeImplies functionExtensionality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination equalityElimination equalityIsType4 baseApply closedConclusion promote_hyp cumulativity addEquality minusEquality isectIsTypeImplies

Latex:
\mforall{}[T:Type].  \mforall{}[f,g,h:T  {}\mrightarrow{}  T].
    (\mforall{}[n:\mBbbN{}].  (g  o  (f  o  h)\^{}n  =  (g  o  (f\^{}n  o  h))))  supposing 
          ((\mforall{}b:T.  ((h  (g  b))  =  b))  and 
          (\mforall{}a:T.  ((g  (h  a))  =  a)))



Date html generated: 2019_10_15-AM-11_19_13
Last ObjectModification: 2018_10_19-PM-01_30_20

Theory : general


Home Index