Nuprl Lemma : decide-decide

[x:Top Top]. ∀[f1,f2,g,h:Top].
  (case case of inl(z) => f1[z] inr(z) => f2[z] of inl(z) => g[z] inr(z) => h[z] case x
   of inl(z) =>
   case f1[z] of inl(z) => g[z] inr(z) => h[z]
   inr(z) =>
   case f2[z] of inl(z) => g[z] inr(z) => h[z])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut unionElimination thin sqequalRule sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination hypothesisEquality because_Cache unionEquality

Latex:
\mforall{}[x:Top  +  Top].  \mforall{}[f1,f2,g,h:Top].
    (case  case  x  of  inl(z)  =>  f1[z]  |  inr(z)  =>  f2[z]  of  inl(z)  =>  g[z]  |  inr(z)  =>  h[z]  \msim{}  case  x
      of  inl(z)  =>
      case  f1[z]  of  inl(z)  =>  g[z]  |  inr(z)  =>  h[z]
      |  inr(z)  =>
      case  f2[z]  of  inl(z)  =>  g[z]  |  inr(z)  =>  h[z])



Date html generated: 2016_05_15-PM-03_25_06
Last ObjectModification: 2015_12_27-PM-01_06_35

Theory : general


Home Index