Nuprl Lemma : decide-trivial
∀[x:Top + Top]. ∀[y:Top].  (case x of inl(z) => y | inr(z) => y ~ y)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
union: left + right
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
unionElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
unionEquality
Latex:
\mforall{}[x:Top  +  Top].  \mforall{}[y:Top].    (case  x  of  inl(z)  =>  y  |  inr(z)  =>  y  \msim{}  y)
Date html generated:
2016_05_15-PM-03_25_40
Last ObjectModification:
2015_12_27-PM-01_07_10
Theory : general
Home
Index