Nuprl Lemma : decide-trivial

[x:Top Top]. ∀[y:Top].  (case of inl(z) => inr(z) => y)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top decide: case of inl(x) => s[x] inr(y) => t[y] union: left right sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut unionElimination thin sqequalRule sqequalAxiom lemma_by_obid hypothesis because_Cache sqequalHypSubstitution isect_memberEquality isectElimination hypothesisEquality unionEquality

Latex:
\mforall{}[x:Top  +  Top].  \mforall{}[y:Top].    (case  x  of  inl(z)  =>  y  |  inr(z)  =>  y  \msim{}  y)



Date html generated: 2016_05_15-PM-03_25_40
Last ObjectModification: 2015_12_27-PM-01_07_10

Theory : general


Home Index