Nuprl Lemma : dectt_wf
∀[p:ℙ]. ∀[d:Dec(p)].  (dectt(d) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
dectt: dectt(d)
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
dectt: dectt(d)
, 
isl: isl(x)
, 
prop: ℙ
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[p:\mBbbP{}].  \mforall{}[d:Dec(p)].    (dectt(d)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-03_58_09
Last ObjectModification:
2015_12_27-PM-03_07_35
Theory : general
Home
Index