Nuprl Lemma : dectt_wf

[p:ℙ]. ∀[d:Dec(p)].  (dectt(d) ∈ 𝔹)


Proof




Definitions occuring in Statement :  dectt: dectt(d) bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q dectt: dectt(d) isl: isl(x) prop:
Lemmas referenced :  btrue_wf bfalse_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin sqequalRule lemma_by_obid hypothesis axiomEquality equalityTransitivity equalitySymmetry isectElimination hypothesisEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[p:\mBbbP{}].  \mforall{}[d:Dec(p)].    (dectt(d)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-03_58_09
Last ObjectModification: 2015_12_27-PM-03_07_35

Theory : general


Home Index