Nuprl Lemma : dectt_wf
∀[p:ℙ]. ∀[d:Dec(p)]. (dectt(d) ∈ 𝔹)
Proof
Definitions occuring in Statement :
dectt: dectt(d)
,
bool: 𝔹
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
decidable: Dec(P)
,
or: P ∨ Q
,
dectt: dectt(d)
,
isl: isl(x)
,
prop: ℙ
Lemmas referenced :
btrue_wf,
bfalse_wf,
decidable_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
unionElimination,
thin,
sqequalRule,
lemma_by_obid,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isectElimination,
hypothesisEquality,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[p:\mBbbP{}]. \mforall{}[d:Dec(p)]. (dectt(d) \mmember{} \mBbbB{})
Date html generated:
2016_05_15-PM-03_58_09
Last ObjectModification:
2015_12_27-PM-03_07_35
Theory : general
Home
Index