Nuprl Lemma : def-cont-induction-lemma-ext

[P:ℕ ⟶ ℙ]
  ((∀n:ℕ(P[n]  P[n 1]))  (∀x:ℤ List. ∀[n,m:ℕ].  P[n]  P[m] supposing (x [n, m) ∈ (ℤ List)) ∧ (n ≤ m)))


Proof




Definitions occuring in Statement :  from-upto: [n, m) list: List nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T def-cont-induction-lemma list_induction sq_stable__and sq_stable__equal
Lemmas referenced :  def-cont-induction-lemma list_induction sq_stable__and sq_stable__equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}  List.  \mforall{}[n,m:\mBbbN{}].    P[n]  {}\mRightarrow{}  P[m]  supposing  (x  =  [n,  m))  \mwedge{}  (n  \mleq{}  m)))



Date html generated: 2018_05_21-PM-07_00_03
Last ObjectModification: 2018_05_19-PM-04_42_26

Theory : general


Home Index