Nuprl Lemma : def-cont-induction-lemma-ext
∀[P:ℕ ⟶ ℙ]
  ((∀n:ℕ. (P[n] 
⇒ P[n + 1])) 
⇒ (∀x:ℤ List. ∀[n,m:ℕ].  P[n] 
⇒ P[m] supposing (x = [n, m) ∈ (ℤ List)) ∧ (n ≤ m)))
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
def-cont-induction-lemma, 
list_induction, 
sq_stable__and, 
sq_stable__equal
Lemmas referenced : 
def-cont-induction-lemma, 
list_induction, 
sq_stable__and, 
sq_stable__equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}  List.  \mforall{}[n,m:\mBbbN{}].    P[n]  {}\mRightarrow{}  P[m]  supposing  (x  =  [n,  m))  \mwedge{}  (n  \mleq{}  m)))
Date html generated:
2018_05_21-PM-07_00_03
Last ObjectModification:
2018_05_19-PM-04_42_26
Theory : general
Home
Index