Nuprl Lemma : def-cont-induction-lemma
∀[P:ℕ ⟶ ℙ]
  ((∀n:ℕ. (P[n] ⇒ P[n + 1])) ⇒ (∀x:ℤ List. ∀[n,m:ℕ].  P[n] ⇒ P[m] supposing (x = [n, m) ∈ (ℤ List)) ∧ (n ≤ m)))
Proof
Definitions occuring in Statement : 
from-upto: [n, m), 
list: T List, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
le: A ≤ B, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
sq_stable: SqStable(P), 
squash: ↓T, 
from-upto: [n, m), 
cand: A c∧ B, 
has-value: (a)↓
Lemmas referenced : 
list_induction, 
uall_wf, 
isect_wf, 
equal-wf-base-T, 
length_wf, 
list_wf, 
all_wf, 
nat_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than'_wf, 
from-upto_wf, 
subtype_rel_list, 
less_than_wf, 
length_of_nil_lemma, 
length-from-upto, 
lt_int_wf, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
intformless_wf, 
int_formula_prop_less_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
list_subtype_base, 
int_subtype_base, 
length_of_cons_lemma, 
squash_wf, 
sq_stable__and, 
sq_stable__equal, 
value-type-has-value, 
int-value-type, 
cons_one_one, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
equal_wf, 
null_wf3, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
le_weakening2, 
non_neg_length, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
productEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
functionExtensionality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
universeEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
cumulativity, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
instantiate, 
impliesFunctionality, 
baseApply, 
closedConclusion, 
imageMemberEquality, 
imageElimination, 
callbyvalueReduce
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}  List.  \mforall{}[n,m:\mBbbN{}].    P[n]  {}\mRightarrow{}  P[m]  supposing  (x  =  [n,  m))  \mwedge{}  (n  \mleq{}  m)))
Date html generated:
2016_10_25-AM-10_52_14
Last ObjectModification:
2016_07_12-AM-07_00_51
Theory : general
Home
Index