Nuprl Lemma : def-cont-induction-lemma

[P:ℕ ⟶ ℙ]
  ((∀n:ℕ(P[n]  P[n 1]))  (∀x:ℤ List. ∀[n,m:ℕ].  P[n]  P[m] supposing (x [n, m) ∈ (ℤ List)) ∧ (n ≤ m)))


Proof




Definitions occuring in Statement :  from-upto: [n, m) list: List nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q prop: so_apply: x[s] subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff sq_stable: SqStable(P) squash: T from-upto: [n, m) cand: c∧ B has-value: (a)↓
Lemmas referenced :  list_induction uall_wf isect_wf equal-wf-base-T length_wf list_wf all_wf nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than'_wf from-upto_wf subtype_rel_list less_than_wf length_of_nil_lemma length-from-upto lt_int_wf decidable__equal_int intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma intformless_wf int_formula_prop_less_lemma assert_wf bnot_wf not_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot list_subtype_base int_subtype_base length_of_cons_lemma squash_wf sq_stable__and sq_stable__equal value-type-has-value int-value-type cons_one_one null_nil_lemma btrue_wf and_wf equal_wf null_wf3 top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse le_weakening2 non_neg_length decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality because_Cache productEquality hypothesis applyEquality hypothesisEquality functionEquality functionExtensionality independent_functionElimination rename dependent_functionElimination universeEquality dependent_set_memberEquality addEquality setElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll cumulativity productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed setEquality hyp_replacement Error :applyLambdaEquality,  instantiate impliesFunctionality baseApply closedConclusion imageMemberEquality imageElimination callbyvalueReduce

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}n:\mBbbN{}.  (P[n]  {}\mRightarrow{}  P[n  +  1]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}  List.  \mforall{}[n,m:\mBbbN{}].    P[n]  {}\mRightarrow{}  P[m]  supposing  (x  =  [n,  m))  \mwedge{}  (n  \mleq{}  m)))



Date html generated: 2016_10_25-AM-10_52_14
Last ObjectModification: 2016_07_12-AM-07_00_51

Theory : general


Home Index