Nuprl Lemma : double-negation-iff-xmiddle

[A:Type]. (∀[P:ℙ]. (((P  A)  A)  (P ∨ A)) ⇐⇒ ∀[P:ℙ]. (P ∨ (P  A)))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q or: P ∨ Q guard: {T}
Lemmas referenced :  uall_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation universeEquality cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality cumulativity functionEquality hypothesisEquality hypothesis independent_functionElimination inrFormation inlFormation because_Cache unionElimination

Latex:
\mforall{}[A:Type].  (\mforall{}[P:\mBbbP{}].  (((P  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (P  \mvee{}  A))  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[P:\mBbbP{}].  (P  \mvee{}  (P  {}\mRightarrow{}  A)))



Date html generated: 2016_05_15-PM-03_19_06
Last ObjectModification: 2015_12_27-PM-01_03_47

Theory : general


Home Index