Nuprl Lemma : equipollent-nat-list-nat

ℕ List ~ ℕ


Proof




Definitions occuring in Statement :  equipollent: B list: List nat:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q
Lemmas referenced :  equipollent_transitivity list_wf nat_wf power-type_wf equipollent-list-as-product equipollent_inversion equipollent-nat-list-as-product
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis productEquality hypothesisEquality independent_functionElimination

Latex:
\mBbbN{}  List  \msim{}  \mBbbN{}



Date html generated: 2016_05_15-PM-06_08_15
Last ObjectModification: 2015_12_27-PM-00_15_04

Theory : general


Home Index