Nuprl Lemma : exists-pair

[A,B:Type]. ∀[P:(A × B) ⟶ ℙ].  (∃p:A × B. P[p] ⇐⇒ ∃a:A. ∃b:B. P[<a, b>])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination productEquality hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_pairEquality functionEquality cumulativity universeEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:(A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}p:A  \mtimes{}  B.  P[p]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A.  \mexists{}b:B.  P[<a,  b>])



Date html generated: 2016_05_15-PM-03_47_16
Last ObjectModification: 2015_12_27-PM-01_21_17

Theory : general


Home Index