Nuprl Lemma : exists-pair
∀[A,B:Type]. ∀[P:(A × B) ⟶ ℙ]. (∃p:A × B. P[p]
⇐⇒ ∃a:A. ∃b:B. P[<a, b>])
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
pair: <a, b>
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
Lemmas referenced :
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
independent_pairFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
lemma_by_obid,
isectElimination,
productEquality,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
hypothesis,
independent_pairEquality,
functionEquality,
cumulativity,
universeEquality,
dependent_pairFormation
Latex:
\mforall{}[A,B:Type]. \mforall{}[P:(A \mtimes{} B) {}\mrightarrow{} \mBbbP{}]. (\mexists{}p:A \mtimes{} B. P[p] \mLeftarrow{}{}\mRightarrow{} \mexists{}a:A. \mexists{}b:B. P[<a, b>])
Date html generated:
2016_05_15-PM-03_47_16
Last ObjectModification:
2015_12_27-PM-01_21_17
Theory : general
Home
Index