Nuprl Lemma : exists-pair
∀[A,B:Type]. ∀[P:(A × B) ⟶ ℙ].  (∃p:A × B. P[p] 
⇐⇒ ∃a:A. ∃b:B. P[<a, b>])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
productEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_pairEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:(A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}p:A  \mtimes{}  B.  P[p]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A.  \mexists{}b:B.  P[<a,  b>])
Date html generated:
2016_05_15-PM-03_47_16
Last ObjectModification:
2015_12_27-PM-01_21_17
Theory : general
Home
Index