Nuprl Lemma : exists-unit

P:Unit ⟶ ℙ(∃x:Unit. P[x] ⇐⇒ P[⋅])


Proof




Definitions occuring in Statement :  it: prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q unit: Unit function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] unit: Unit member: t ∈ T it: prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  exists_wf unit_wf2 it_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin equalityElimination hypothesis cut lemma_by_obid isectElimination sqequalRule lambdaEquality applyEquality hypothesisEquality dependent_pairFormation functionEquality cumulativity universeEquality

Latex:
\mforall{}P:Unit  {}\mrightarrow{}  \mBbbP{}.  (\mexists{}x:Unit.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[\mcdot{}])



Date html generated: 2016_05_15-PM-03_24_53
Last ObjectModification: 2015_12_27-PM-01_06_18

Theory : general


Home Index