Nuprl Lemma : fact_unroll

[n:ℤ]. ((n)! if (n =z 0) then else (n 1)! fi )


Proof




Definitions occuring in Statement :  fact: (n)! ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] multiply: m subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fact: (n)! top: Top
Lemmas referenced :  primrec-unroll subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality sqequalAxiom intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  ((n)!  \msim{}  if  (n  =\msubz{}  0)  then  1  else  n  *  (n  -  1)!  fi  )



Date html generated: 2016_05_15-PM-04_04_53
Last ObjectModification: 2015_12_27-PM-03_03_53

Theory : general


Home Index