Nuprl Lemma : fact_unroll
∀[n:ℤ]. ((n)! ~ if (n =z 0) then 1 else n * (n - 1)! fi )
Proof
Definitions occuring in Statement : 
fact: (n)!
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fact: (n)!
, 
top: Top
Lemmas referenced : 
primrec-unroll, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
sqequalAxiom, 
intEquality
Latex:
\mforall{}[n:\mBbbZ{}].  ((n)!  \msim{}  if  (n  =\msubz{}  0)  then  1  else  n  *  (n  -  1)!  fi  )
Date html generated:
2016_05_15-PM-04_04_53
Last ObjectModification:
2015_12_27-PM-03_03_53
Theory : general
Home
Index