Nuprl Lemma : fun-connected-test

[T:Type]. ∀f:T ⟶ T. ∀x,y,z,w:T.  (y is f*(x)  is f*(y)  is f*(z)  is f*(x))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} prop:
Lemmas referenced :  fun-connected_transitivity fun-connected_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y,z,w:T.    (y  is  f*(x)  {}\mRightarrow{}  z  is  f*(y)  {}\mRightarrow{}  w  is  f*(z)  {}\mRightarrow{}  w  is  f*(x))



Date html generated: 2016_05_15-PM-05_04_00
Last ObjectModification: 2015_12_27-PM-02_28_23

Theory : general


Home Index