Nuprl Lemma : fun-connected-test2
∀[T:Type]. ∀f:T ⟶ T. ∀x:T.  x is f*(x)
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
fun-connected_weakening_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.    x  is  f*(x)
Date html generated:
2016_05_15-PM-05_04_09
Last ObjectModification:
2015_12_27-PM-02_28_03
Theory : general
Home
Index