Nuprl Lemma : inconsistent-bool-eq
uiff(tt = ff;False)
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
false: False
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_neq_bfalse, 
equal_wf, 
bool_wf, 
btrue_wf, 
bfalse_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
isectElimination
Latex:
uiff(tt  =  ff;False)
Date html generated:
2016_05_15-PM-03_27_28
Last ObjectModification:
2015_12_27-PM-01_08_26
Theory : general
Home
Index