Nuprl Lemma : indNat_wf
INat ∈ 𝕌'
Proof
Definitions occuring in Statement : 
indNat: INat
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
indNat: INat
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
dep-isect_wf, 
church-Nat_wf, 
church-inductive_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
lambdaEquality_alt, 
isectElimination, 
hypothesisEquality, 
universeIsType
Latex:
INat  \mmember{}  \mBbbU{}'
Date html generated:
2020_05_20-AM-08_05_47
Last ObjectModification:
2019_11_15-PM-10_37_13
Theory : general
Home
Index