Nuprl Lemma : indNat_wf

INat ∈ 𝕌'


Proof




Definitions occuring in Statement :  indNat: INat member: t ∈ T universe: Type
Definitions unfolded in proof :  indNat: INat member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: so_apply: x[s]
Lemmas referenced :  dep-isect_wf church-Nat_wf church-inductive_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis lambdaEquality_alt isectElimination hypothesisEquality universeIsType

Latex:
INat  \mmember{}  \mBbbU{}'



Date html generated: 2020_05_20-AM-08_05_47
Last ObjectModification: 2019_11_15-PM-10_37_13

Theory : general


Home Index