Nuprl Lemma : church-inductive_wf
∀[x:cNat]. (church-inductive{i:l}(x) ∈ ℙ')
Proof
Definitions occuring in Statement : 
church-inductive: church-inductive{i:l}(x)
, 
church-Nat: cNat
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
church-inductive: church-inductive{i:l}(x)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
church-Nat_wf, 
church-zero_wf, 
subtype_rel_self, 
church-succ_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
functionEquality, 
extract_by_obid, 
hypothesis, 
universeEquality, 
cumulativity, 
applyEquality, 
hypothesisEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[x:cNat].  (church-inductive\{i:l\}(x)  \mmember{}  \mBbbP{}')
Date html generated:
2020_05_20-AM-08_05_32
Last ObjectModification:
2019_11_15-PM-10_11_45
Theory : general
Home
Index