Nuprl Lemma : church-inductive_wf

[x:cNat]. (church-inductive{i:l}(x) ∈ ℙ')


Proof




Definitions occuring in Statement :  church-inductive: church-inductive{i:l}(x) church-Nat: cNat uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T church-inductive: church-inductive{i:l}(x) prop: implies:  Q subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  church-Nat_wf church-zero_wf subtype_rel_self church-succ_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule isectEquality functionEquality extract_by_obid hypothesis universeEquality cumulativity applyEquality hypothesisEquality thin instantiate sqequalHypSubstitution isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[x:cNat].  (church-inductive\{i:l\}(x)  \mmember{}  \mBbbP{}')



Date html generated: 2020_05_20-AM-08_05_32
Last ObjectModification: 2019_11_15-PM-10_11_45

Theory : general


Home Index