Nuprl Lemma : int_eq-as-ifthenelse

[r,s,x,y:Top].  (if r=s  then x  else if (r =z s) then else fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top int_eq: if a=b  then c  else d sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  int_eq_as_ite top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalAxiom sqequalRule isect_memberEquality because_Cache

Latex:
\mforall{}[r,s,x,y:Top].    (if  r=s    then  x    else  y  \msim{}  if  (r  =\msubz{}  s)  then  x  else  y  fi  )



Date html generated: 2016_05_15-PM-03_25_25
Last ObjectModification: 2015_12_27-PM-01_06_57

Theory : general


Home Index