Nuprl Lemma : int_eq-as-ifthenelse
∀[r,s,x,y:Top].  (if r=s  then x  else y ~ if (r =z s) then x else y fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
int_eq: if a=b  then c  else d
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
int_eq_as_ite, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r,s,x,y:Top].    (if  r=s    then  x    else  y  \msim{}  if  (r  =\msubz{}  s)  then  x  else  y  fi  )
Date html generated:
2016_05_15-PM-03_25_25
Last ObjectModification:
2015_12_27-PM-01_06_57
Theory : general
Home
Index