Nuprl Lemma : int_eq_as_ite

[a,b,x,y:Top].  (if x=y  then a  else if (x =z y) then else fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top int_eq: if a=b  then c  else d sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff it: so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  lifting-strict-int_eq top_wf equal_wf has-value_wf_base base_wf is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesis hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom

Latex:
\mforall{}[a,b,x,y:Top].    (if  x=y    then  a    else  b  \msim{}  if  (x  =\msubz{}  y)  then  a  else  b  fi  )



Date html generated: 2017_10_01-AM-08_39_21
Last ObjectModification: 2017_07_26-PM-04_27_27

Theory : untyped!computation


Home Index