Nuprl Lemma : int_eq_as_ite
∀[a,b,x,y:Top].  (if x=y  then a  else b ~ if (x =z y) then a else b fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
top: Top, 
int_eq: if a=b  then c  else d, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
it: ⋅, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T
Lemmas referenced : 
lifting-strict-int_eq, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom
Latex:
\mforall{}[a,b,x,y:Top].    (if  x=y    then  a    else  b  \msim{}  if  (x  =\msubz{}  y)  then  a  else  b  fi  )
Date html generated:
2017_10_01-AM-08_39_21
Last ObjectModification:
2017_07_26-PM-04_27_27
Theory : untyped!computation
Home
Index