Nuprl Lemma : isect-subtype-1

[F:Type ⟶ Type]. ∀[A:Type].  ((⋂A:Type. F[A]) ⊆F[A])


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality isectElimination hypothesisEquality equalityTransitivity equalitySymmetry hypothesis isectEquality universeEquality cumulativity applyEquality axiomEquality sqequalHypSubstitution isect_memberEquality thin because_Cache functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].    ((\mcap{}A:Type.  F[A])  \msubseteq{}r  F[A])



Date html generated: 2016_05_15-PM-03_21_26
Last ObjectModification: 2015_12_27-PM-01_04_12

Theory : general


Home Index