Step
*
1
of Lemma
iseg-transition-lemma
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. L : T List
4. x : T
5. ∃L1:T List. (L1 ≤ L @ [x] ∧ P[L1])
6. ¬(∃L1:T List. (L1 ≤ L ∧ P[L1]))
⊢ P[L @ [x]]
BY
{ (((ExRepD THEN (RWO "iseg_append_iff" (-3))) THENA Auto) THEN (D (-3))) }
1
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. L : T List
4. x : T
5. L1 : T List
6. L1 ≤ L
7. P[L1]
8. ¬(∃L1:T List. (L1 ≤ L ∧ P[L1]))
⊢ P[L @ [x]]
2
1. [T] : Type
2. [P] : (T List) ⟶ ℙ
3. L : T List
4. x : T
5. L1 : T List
6. ∃l:T List. (0 < ||l|| ∧ (L1 = (L @ l) ∈ (T List)) ∧ l ≤ [x])
7. P[L1]
8. ¬(∃L1:T List. (L1 ≤ L ∧ P[L1]))
⊢ P[L @ [x]]
Latex:
Latex:
1. [T] : Type
2. [P] : (T List) {}\mrightarrow{} \mBbbP{}
3. L : T List
4. x : T
5. \mexists{}L1:T List. (L1 \mleq{} L @ [x] \mwedge{} P[L1])
6. \mneg{}(\mexists{}L1:T List. (L1 \mleq{} L \mwedge{} P[L1]))
\mvdash{} P[L @ [x]]
By
Latex:
(((ExRepD THEN (RWO "iseg\_append\_iff" (-3))) THENA Auto) THEN (D (-3)))
Home
Index