Nuprl Lemma : iseg-transition-lemma
∀[T:Type]. ∀[P:(T List) ⟶ ℙ].
  ∀L:T List. ∀x:T.
    ((∃L1:T List. (L1 ≤ L @ [x] ∧ P[L1])) ∧ (¬(∃L1:T List. (L1 ≤ L ∧ P[L1])))
    ⇐⇒ P[L @ [x]] ∧ (¬(∃L1:T List. (L1 ≤ L ∧ P[L1]))))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
or: P ∨ Q, 
squash: ↓T, 
true: True, 
less_than: a < b, 
less_than': less_than'(a;b), 
cons: [a / b], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff
Lemmas referenced : 
exists_wf, 
list_wf, 
iseg_wf, 
append_wf, 
cons_wf, 
nil_wf, 
not_wf, 
iseg_weakening, 
iseg_append_iff, 
equal_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
cons_iseg, 
iseg_nil, 
null_nil_lemma, 
null_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
because_Cache, 
dependent_pairFormation, 
dependent_functionElimination, 
functionEquality, 
unionElimination, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
levelHypothesis, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :applyLambdaEquality, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:T  List.  \mforall{}x:T.
        ((\mexists{}L1:T  List.  (L1  \mleq{}  L  @  [x]  \mwedge{}  P[L1]))  \mwedge{}  (\mneg{}(\mexists{}L1:T  List.  (L1  \mleq{}  L  \mwedge{}  P[L1])))
        \mLeftarrow{}{}\mRightarrow{}  P[L  @  [x]]  \mwedge{}  (\mneg{}(\mexists{}L1:T  List.  (L1  \mleq{}  L  \mwedge{}  P[L1]))))
Date html generated:
2016_10_25-AM-10_54_48
Last ObjectModification:
2016_07_12-AM-07_02_05
Theory : general
Home
Index