Nuprl Lemma : listid_cons_lemma
∀y,x:Top. (listid([x / y]) ~ [x / listid(y)])
Proof
Definitions occuring in Statement :
listid: listid(L)
,
cons: [a / b]
,
top: Top
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
listid: listid(L)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
top_wf,
list_ind_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
lemma_by_obid,
sqequalRule,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality
Latex:
\mforall{}y,x:Top. (listid([x / y]) \msim{} [x / listid(y)])
Date html generated:
2016_05_15-PM-03_36_34
Last ObjectModification:
2015_12_27-PM-01_14_44
Theory : general
Home
Index