Nuprl Lemma : map-reverse-top
∀[f,L:Top].  (map(f;rev(L)) ~ rev(map(f;L)))
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
map-rev-append-top, 
map_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[f,L:Top].    (map(f;rev(L))  \msim{}  rev(map(f;L)))
Date html generated:
2016_05_15-PM-04_31_11
Last ObjectModification:
2015_12_27-PM-02_49_39
Theory : general
Home
Index