Nuprl Lemma : map-reverse-top

[f,L:Top].  (map(f;rev(L)) rev(map(f;L)))


Proof




Definitions occuring in Statement :  reverse: rev(as) map: map(f;as) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as) top: Top all: x:A. B[x]
Lemmas referenced :  map-rev-append-top map_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis dependent_functionElimination sqequalAxiom because_Cache

Latex:
\mforall{}[f,L:Top].    (map(f;rev(L))  \msim{}  rev(map(f;L)))



Date html generated: 2016_05_15-PM-04_31_11
Last ObjectModification: 2015_12_27-PM-02_49_39

Theory : general


Home Index