Nuprl Lemma : map-reverse-top
∀[f,L:Top]. (map(f;rev(L)) ~ rev(map(f;L)))
Proof
Definitions occuring in Statement :
reverse: rev(as)
,
map: map(f;as)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
reverse: rev(as)
,
top: Top
,
all: ∀x:A. B[x]
Lemmas referenced :
map-rev-append-top,
map_nil_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
dependent_functionElimination,
sqequalAxiom,
because_Cache
Latex:
\mforall{}[f,L:Top]. (map(f;rev(L)) \msim{} rev(map(f;L)))
Date html generated:
2016_05_15-PM-04_31_11
Last ObjectModification:
2015_12_27-PM-02_49_39
Theory : general
Home
Index