Nuprl Lemma : map-rev-append-top

[f,a,b:Top].  (map(f;rev(a) b) rev(map(f;a)) map(f;b))


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs map: map(f;as) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-append: rev(as) bs map: map(f;as) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] top: Top list_accum: list_accum
Lemmas referenced :  top_wf rev_app_nil_lemma rev_app_cons_lemma map_cons_lemma is-exception_wf base_wf has-value_wf_base sqequal-list_accum-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache sqequalAxiom

Latex:
\mforall{}[f,a,b:Top].    (map(f;rev(a)  +  b)  \msim{}  rev(map(f;a))  +  map(f;b))



Date html generated: 2016_05_15-PM-04_31_04
Last ObjectModification: 2016_01_16-AM-11_15_47

Theory : general


Home Index