Nuprl Lemma : map-rev-append-top
∀[f,a,b:Top].  (map(f;rev(a) + b) ~ rev(map(f;a)) + map(f;b))
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
map: map(f;as)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict1: strict1(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
list_ind: list_ind, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
top: Top
, 
list_accum: list_accum
Lemmas referenced : 
top_wf, 
rev_app_nil_lemma, 
rev_app_cons_lemma, 
map_cons_lemma, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
sqequal-list_accum-list_ind
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
inlFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inrFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
sqequalAxiom
Latex:
\mforall{}[f,a,b:Top].    (map(f;rev(a)  +  b)  \msim{}  rev(map(f;a))  +  map(f;b))
Date html generated:
2016_05_15-PM-04_31_04
Last ObjectModification:
2016_01_16-AM-11_15_47
Theory : general
Home
Index