Nuprl Lemma : map-spread
∀[x,f,L:Top].  (map(f;let a,b = x in L[a;b]) ~ let a,b = x in map(f;L[a;b]))
Proof
Definitions occuring in Statement : 
map: map(f;as), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
map: map(f;as), 
list_ind: list_ind, 
cons: [a / b], 
nil: [], 
it: ⋅, 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[x,f,L:Top].    (map(f;let  a,b  =  x  in  L[a;b])  \msim{}  let  a,b  =  x  in  map(f;L[a;b]))
Date html generated:
2016_05_15-PM-04_33_24
Last ObjectModification:
2016_01_16-AM-11_16_35
Theory : general
Home
Index