Nuprl Lemma : max-WFTO_wf

max-WFTO{i:l}() ∈ WFTRO{i':l}


Proof




Definitions occuring in Statement :  max-WFTO: max-WFTO{i:l}() WFTRO: WFTRO{i:l}() member: t ∈ T
Definitions unfolded in proof :  max-WFTO: max-WFTO{i:l}() WFTRO: WFTRO{i:l}() member: t ∈ T infix_ap: y uall: [x:A]. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  WFO_wf order-type-less_wf DCC-order-type_wf ot-less-trans_wf DCC_wf trans_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairEquality cut lemma_by_obid hypothesis independent_pairEquality sqequalRule sqequalHypSubstitution productEquality thin instantiate isectElimination hypothesisEquality lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
max-WFTO\{i:l\}()  \mmember{}  WFTRO\{i':l\}



Date html generated: 2016_05_15-PM-04_15_36
Last ObjectModification: 2015_12_27-PM-02_57_55

Theory : general


Home Index