Nuprl Lemma : no-uniform-Peirce's-law
¬(∀[P,B:ℙ].  (((P 
⇒ B) 
⇒ P) 
⇒ P))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
false: False
Lemmas referenced : 
Peirce's-law-iff-xmiddle, 
no-uniform-xmiddle, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isectIsType, 
universeIsType, 
universeEquality, 
inhabitedIsType, 
hypothesisEquality, 
functionIsType, 
because_Cache, 
isect_memberFormation_alt, 
voidElimination, 
isectElimination
Latex:
\mneg{}(\mforall{}[P,B:\mBbbP{}].    (((P  {}\mRightarrow{}  B)  {}\mRightarrow{}  P)  {}\mRightarrow{}  P))
Date html generated:
2019_10_15-AM-11_06_38
Last ObjectModification:
2019_06_26-PM-04_18_13
Theory : general
Home
Index