Nuprl Lemma : no-uniform-xmiddle
¬(∀[P:ℙ]. (P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
not: ¬A, 
or: P ∨ Q
Definitions unfolded in proof : 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
or: P ∨ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
false: False, 
bfalse: ff, 
true: True
Lemmas referenced : 
uall_wf, 
or_wf, 
not_wf, 
false_wf, 
equal_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
rename, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality
Latex:
\mneg{}(\mforall{}[P:\mBbbP{}].  (P  \mvee{}  (\mneg{}P)))
Date html generated:
2016_05_15-PM-03_19_09
Last ObjectModification:
2015_12_27-PM-01_03_35
Theory : general
Home
Index