Nuprl Lemma : one_or_both_ind_wf

[X:𝕌{j}]. ∀[A,B:Type]. ∀[x:one_or_both(A;B)]. ∀[both:bval:(A × B) ⟶ X]. ∀[left:lval:A ⟶ X]. ∀[right:rval:B ⟶ X].
  (one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval]) ∈ X)


Proof




Definitions occuring in Statement :  one_or_both_ind: one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval]) one_or_both: one_or_both(A;B) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T one_or_both: one_or_both(A;B) one_or_both_ind: one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval]) so_apply: x[s]
Lemmas referenced :  one_or_both_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule unionElimination thin productElimination applyEquality hypothesisEquality independent_pairEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity isect_memberEquality isectElimination because_Cache productEquality lemma_by_obid universeEquality

Latex:
\mforall{}[X:\mBbbU{}\{j\}].  \mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].  \mforall{}[both:bval:(A  \mtimes{}  B)  {}\mrightarrow{}  X].  \mforall{}[left:lval:A  {}\mrightarrow{}  X].
\mforall{}[right:rval:B  {}\mrightarrow{}  X].
    (one\_or\_both\_ind(x;bval.both[bval];lval.left[lval];rval.right[rval])  \mmember{}  X)



Date html generated: 2016_05_15-PM-05_32_32
Last ObjectModification: 2015_12_27-PM-02_10_09

Theory : general


Home Index