Nuprl Lemma : one_or_both_ind_wf
∀[X:𝕌{j}]. ∀[A,B:Type]. ∀[x:one_or_both(A;B)]. ∀[both:bval:(A × B) ⟶ X]. ∀[left:lval:A ⟶ X]. ∀[right:rval:B ⟶ X].
  (one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval]) ∈ X)
Proof
Definitions occuring in Statement : 
one_or_both_ind: one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval])
, 
one_or_both: one_or_both(A;B)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
one_or_both: one_or_both(A;B)
, 
one_or_both_ind: one_or_both_ind(x;bval.both[bval];lval.left[lval];rval.right[rval])
, 
so_apply: x[s]
Lemmas referenced : 
one_or_both_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
unionElimination, 
thin, 
productElimination, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
productEquality, 
lemma_by_obid, 
universeEquality
Latex:
\mforall{}[X:\mBbbU{}\{j\}].  \mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].  \mforall{}[both:bval:(A  \mtimes{}  B)  {}\mrightarrow{}  X].  \mforall{}[left:lval:A  {}\mrightarrow{}  X].
\mforall{}[right:rval:B  {}\mrightarrow{}  X].
    (one\_or\_both\_ind(x;bval.both[bval];lval.left[lval];rval.right[rval])  \mmember{}  X)
Date html generated:
2016_05_15-PM-05_32_32
Last ObjectModification:
2015_12_27-PM-02_10_09
Theory : general
Home
Index